

Tecnólogo em Processos Gerenciais

Administração da Produção

Metodologia para o Planejamento e Organização do Layout Produtivo

Professora Dra. Thaisa Rodrigues

Objetivos da aula:

- 1. Compreender o conceito de arranjo físico em operações produtivas.
- 2. Identificar os diferentes tipos de arranjos físicos e suas características.
- 3. Relacionar tipos de arranjos físicos com sistemas produtivos.
- 4. Planejar a melhoria de um arranjo físico considerando ferramentas e métodos adequados.

ATIVIDADE PRÁTICA – ARRANJO **FÍSICO E PCP**

GRUPO 1: Elder, Priscila, Paulo Batista e Gisele

GRUPO 2: Kayke, Helena, Luana, Maria Elizandra

GRUPO 3: Daiane, Diogo, Nathalia e Paulo

GRUPO 4: Rayane, Heloisa e Thalis.

Objetivos da aula:

- 1. Compreender o conceito de arranjo físico em operações produtivas.
- 2. Identificar os diferentes tipos de arranjos físicos e suas características.
- 3. Relacionar tipos de arranjos físicos com sistemas produtivos.
- 4. Planejar a melhoria de um arranjo físico considerando ferramentas e métodos adequados.

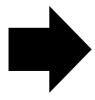
Planejamento do Arranjo Físico:

- ✓ O objetivo é minimizar fluxo cruzado de pessoas e materiais, minimizar custos de transporte, etc.
- ✓ Devem ser seguidas normas relacionadas a **ergonomia e segurança do trabalho**, essas influenciam também nos <u>espaços disponíveis para atividades e movimentação.</u>
- ✓ NR-12 regulamenta uma série de normas para o arranjo físico e instalações de máquinas e equipamentos:
 - Áreas de circulação e saída que devem ter faixas e sinalizações
 - Distância entre as máquinas que deve permitir a operação, manutenção, ajuste, limpeza e inspeção em condições seguras.

Planejamento do Arranjo Físico:

- ✓ Dependendo do ramo de atuação podem existir <u>regras sobre a localização de</u> <u>algumas áreas funcionais</u>, ex. em um frigorífico não é adequado que o banheiro fique localizado dentro do chão da fábrica.
- Devem ser projetadas diversas possibilidades de layout, de preferência com representação física para selecionar a mais adequada.

Etapas o Planejamento do Arranjo Físico e Metodologia:


Etapas do Planejamento do Arranjo Físico:

Existem softwares que ajudam projetar.

 Determinação do número de equipamentos

Considera a capacidade produtiva

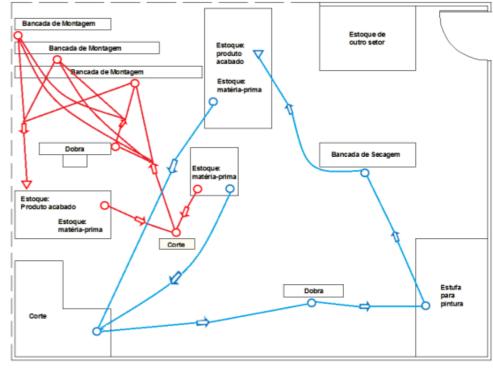
Systematic Layout Planning (SLP)

2. Seleção do tipo de layout.

Considera o tipo de SP e objetivos estratégicos

- 3. Projeto detalhado do arranjo físico
- ✓ Normas de Ergonomia e Segurança do Trabalho

Systematic Layout Planning (SLP)

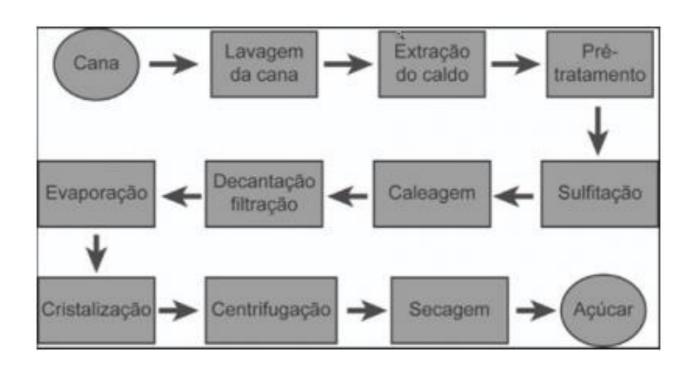

1. Determinação dos Requisitos de Produção

Tipos de mercadorias (paletes, caixas soltas), volume diário de entrada e saída, área total e layout atual.

2. Descrição das Etapas

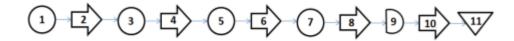
Mapear o fluxo de materiais e informações: recebimento da MP, conferência, armazenagem, produção e expedição.

Pro	cesso: produção geral de um lote de produtos	Local: Indústria de pré-fabricados e artefatos de concreto Analista: TG2E			
Pro	duto: Calhas				
N°	Descrição da atividade	Tipo de atividade	Distância percorrida (m)		
1	Separar e apanhar matéria-prima	$O \Rightarrow D \nabla$			
2	Levar matéria-prima para a máquina de cortar	O ⇒ D∇	21		
3	Medir e cortar matéria-prima	\bigcirc			
4	Levar matéria-prima para máquina de dobrar	$\bigcirc \Rightarrow \square \nabla$	9		
5	Dobrar matéria-prima	$o \Rightarrow D \nabla$			
6	Levar calha à estufa para tintura	$\bigcirc \Rightarrow \square \bigcirc$	4,5		
7	Tingir a calha	\bigcirc \square \square			
8	Levar a calha à mesa para secagem	$\bigcirc \Rightarrow \square \bigcirc$	6,3		
9	Deixar a calha na mesa para secagem	O⇒D▽			
10	Levar a calha para o local de estoque de produto acabado	$\bigcirc \Rightarrow D \triangledown$	5		
11	Armazenar no local de estoque	$\bigcirc \Rightarrow D \nabla$			



* OBS. O fluxo produtivo na cor azul é do produto calha e o fluxo produtivo na cor vermelha é do produto trelica.

Figura 4 - Mapofluxograma do setor produtivo de calhas e treliças



Fluxograma de Processo – Diagrama de blocos do Processo de Fabricação de Açúcar.

Fluxograma de Processo, estilo americano

SIMBOLO	ATIVIDADE	DEFINIÇÃO DA ATIVIDADE				
0	Operação	Significa uma mudança internacional de estado, forma, ou condição sobre um material ou informação, como: montagem, desmontagem, transcrição, fabricação, embalagem, processamento, etc.				
⇒	Transporte	Movimento de um objeto ou de um registro de informação de um local para outro, exceto os movimentos inerentes à operação ou inspeção.				
D	Demora ou Espera	Quando há um lapso de tempo entre duas atividades do processo gerando estoque intermediário no local de trabalho e que para ser removido não necessita de controle formal.				
∇	Armazenamento	Retenção de um objeto ou de um registro de informação em determinado local exclusivamente dedicado a este fim e que para ser removido necessita de controle formal.				

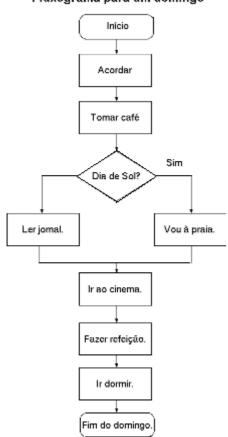

Fonte: Simcsik, T. (1992)

Tabela 1 - Simbologia fluxograma (ASME)

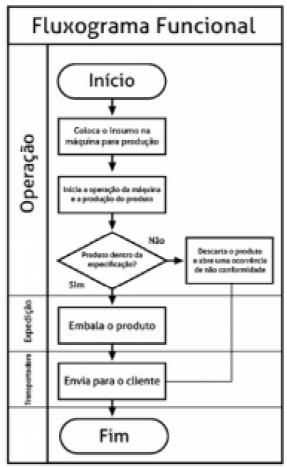
Fluxograma de Processo Simples, estilo europeu

Fluxograma para um domingo

Os símbolos geométricos que compõe o fluxograma são:

Operação	Oecisão Decisão	Input Output	conexão de páginas
Inspeção	Preparação	Cartão perfurado	Preparação
Demora	Terminal	Memória principal	Decisão
Transporte	Junção	Sub-rotina	Display
Armazenamento	⊕ "ou"	Tambor magnético	Extrair
Ações combinadas	Disco magnético	O	Vários documentos
Processo	Fita magnética		X Agrupar
Operação Manual	Documento	Fita papel perfurada	Entrada manual

•Início/Fim: geralmente com elipses


•Atividades: em retângulos

Decisões: em losangos

•Setas: indicam o fluxo

Fluxograma de Processo Funcional

•Início/Fim: geralmente com elipses

•Atividades: em retângulos

•Decisões: em losangos

•Setas: indicam o fluxo

Diagrama de Fluxo de Processo ou Fluxograma vertical

•Descrição: Representação gráfica que detalha todas as operações, transportes, inspeções, demoras e estoques que ocorrem em um processo.

•Uso: Utilizado para análise detalhada do processo produtivo e identificação de melhorias no

fluxo de trabalho.

Pro	cesso: produção geral de um lote de produtos	Local: Indústria de pré-fabricados e artefatos de concreto Analista: TG2E			
Pro	duto: Calhas				
N°	Descrição da atividade	Tipo de atividade	Distância percorrida (m)		
1	Separar e apanhar matéria-prima	$O \Rightarrow D \nabla$			
2	Levar matéria-prima para a máquina de cortar	$\bigcirc \Rightarrow \square \nabla$	21		
3	Medir e cortar matéria-prima	$O \Rightarrow D \nabla$			
4	Levar matéria-prima para máquina de dobrar	$\bigcirc \Rightarrow \square \nabla$	9		
5	Dobrar matéria-prima	$O \Rightarrow D \nabla$			
6	Levar calha à estufa para tintura	$\bigcirc \Rightarrow \square \nabla$	4,5		
7	Tingir a calha	$O \Rightarrow D \nabla$			
8	Levar a calha à mesa para secagem	$\bigcirc \Rightarrow \square \nabla$	6,3		
9	Deixar a calha na mesa para secagem	O⇒D▽			
10	Levar a calha para o local de estoque de produto acabado	$\bigcirc \Rightarrow D \triangledown$	5		
11	Armazenar no local de estoque	○⇒D∇			

Tabela 2 - Diagrama de fluxo de processo do produto calha

Systematic Layout Planning (SLP)

1. Determinação dos Requisitos de Produção

Tipos de mercadorias (paletes, caixas soltas), volume diário de entrada e saída, área total e layout atual.

2. Descrição das Etapas

Mapear o fluxo de materiais e informações: recebimento da MP, conferência, armazenagem, produção e expedição.


3. Análise dos Processos e Fluxos

Determinar o que precisa ficar próximo do que: Criação de diagramas que mostram as relações entre diferentes departamentos ou áreas de trabalho, facilitando a visualização dos fluxos.

Diagrama de Relacionamento de Atividades

- •Descrição: Diagrama que mostra as relações entre diferentes atividades ou departamentos com base na importância da proximidade.
- •Uso: Ajuda na identificação de áreas críticas de proximidade e no desenvolvimento de layouts baseados nas relações entre atividades.

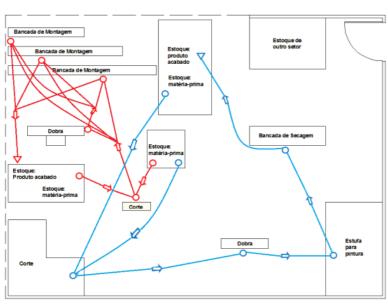
Contr	ole de (Qualidad	le										
A	Estoc	Estoque											
U	A	Expedição /Recebimento											
U	X	E	Jato										
U	U	A	X	Jean	Jeans Cru								
U	U	U	U	U	Labo	ratório (Químico						
U	U	U	U	U	I	Laboratório							
U	U	I	U	A	U	U	U Laser						
U	U	U	A	U	U	U	U	Lava	Lavanderia				
U	U	U	U	U	U	U	A	U	Lixa				
A	0	U	I	U	U	U	U	A	U	Passa	Passadoria		
U	U	U	A	U	U	U	U	0	A	U	Stoner		

QUADRO 3 - Diagrama de relações do processo de customização das calças jeans.

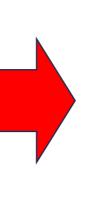
Legenda:

- A = Absolutamente importante estar próximo
- E = Especialmente importante estar próximo
- I = Importante estar próximo
- O = Desejável estar próximo
- U = Não precisa estar próximo
- X = Indesejável estar próximo

1. Determinação dos Requisitos de Produção Tipos de mercadorias (paletes, caixas soltas), volume diário de entrada e saída, área total e layout atual.


2. Descrição das Etapas

Mapear o fluxo de materiais e informações: recebimento da MP, conferência, armazenagem, produção e expedição.


3. Análise dos Processos e Fluxos

Determinar o que precisa ficar próximo do que: Criação de diagramas que mostram as relações entre diferentes departamentos ou áreas de trabalho, facilitando a visualização dos fluxos.

4. Desenvolvimento de Alternativas de Layout

* OBS. O fluxo produtivo na cor azul é do produto calha e o fluxo produtivo na cor vermelha é do produto trelica.

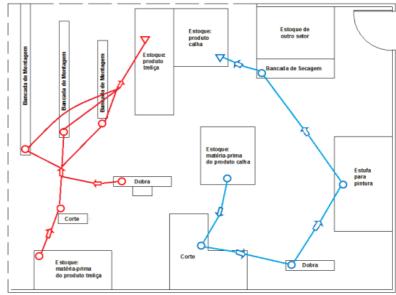
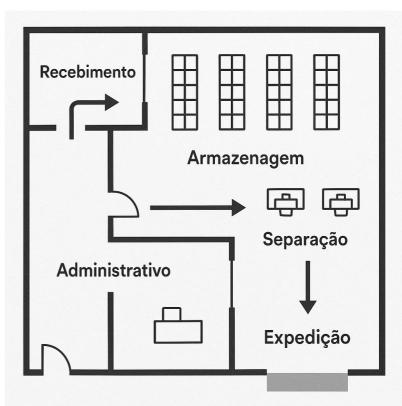


Figura 6- Mapofluxograma do novo layout

Objetivo:


Analisar criticamente o arranjo físico de um armazém e propor melhorias com base nos princípios da SLP.

🗐 Instruções:

- 1. Observe a planta baixa apresentada.
- 2. Analise o fluxo de materiais e pessoas indicado pelas setas.
- 3. Identifique possíveis gargalos, desperdícios ou riscos no layout atual.
- 4.Com base nos conceitos de layout (fluxo contínuo, segurança, acessibilidade, minimização de

movimentações), responda:

- 1. O layout atual é eficiente? Justifique.
- 2. Quais setores poderiam ser reposicionados?
- 3. Como o fluxo poderia ser melhorado?
- 5. Faça um esboço com sua **sugestão de novo layout** ou descreva as mudanças propostas.

