

Tecnologia em Processos Gerenciais

Administração da Produção

PCP: Programação e Sequenciamento da Produção - SP Massa com Layout por Produto

Professora Dra. Thaisa Rodrigues

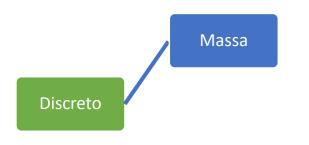
Atenção!!!

- ✓ Aula EaD 14/06
- ✓ Prova dia 03/07

Linha de Produção / Frigorífico

- Recepção e Inspeção das Aves Vivas
- Atordoamento (Insensibilização)
- Sangria
- Escaldagem
- Depenagem
- Evisceração
- Lavagem da Carcaça
- Inspeção Final (Sanitária e de Qualidade)
- Resfriamento (Chiller ou Ar Frio)
- Corte e Desossa (opcional)
- Pesagem e Embalagem

Linha de Montagem



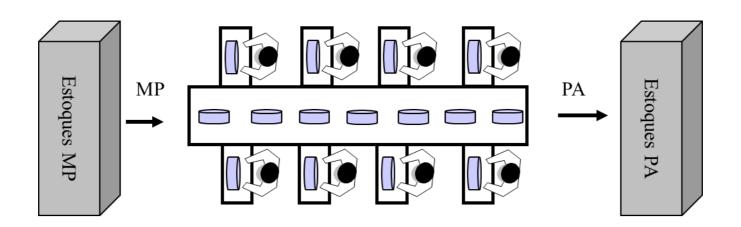
Sistema Produtivo em Massa

CARACTERÍSTICAS

Processos discretos: Processos repetitivos em massa

- Alto volume:
- Mão de obra pouco qualificada.
- Produtos altamente padronizados, mas permite certa variedade;
- Métodos e equipamentos altamente padronizados, agrupados por fluxo de trabalho (*layout mais indicado Linha*);

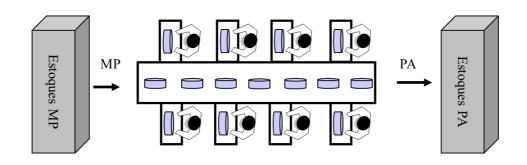
Ex: Fabricação de automóveis no geral, eletrodomésticos, abate e beneficiamento de aves, suínos e gado



Balanceamento de Linha de Produção

O balanceamento de linha é a técnica de distribuir uniformemente as tarefas entre os postos de trabalho de uma linha de produção, de modo que todos os operadores ou máquinas trabalhem com tempos semelhantes, minimizando o tempo ocioso e os gargalos.

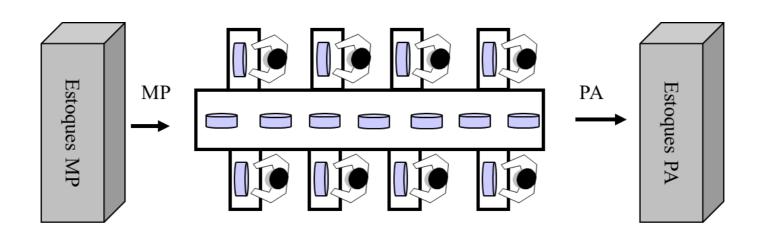
Definições sobre Balanceamento de Linha de Produção


- 1. Tempo de ciclo (TC) É o tempo / intervalo entre uma unidade sair e a próxima, com a linha equilibrada
- 2. Takt time: TC ideal para atender a demanda.
- Ex. Precisamos produzir 30 peças por hora. Para atender esta questão, qual o tempo de ciclo?

$$TC = \frac{\text{Tempo disponível por período}}{\text{Unidades a serem produzidas no mesmo período}}$$

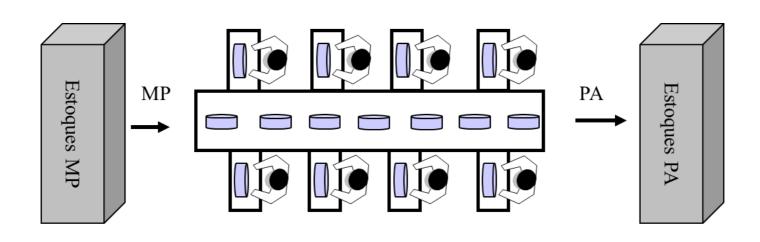
$$TC = 60min/30 = 2min = takt time$$

$$TC = \frac{capacidade\ disponível}{capacidade\ de\ produção}$$


- Isso significa, que cada posto de trabalho em uma linha de produção, não pode exceder 2 min, se tiver um posto que demore mais, ele seria nosso gargalo produtivo e a capacidade produtiva seria baseada nele.
- Nestas condições se tiver um posto trabalhando 3 min, ele vai ser um gargalo e vai determinar o ritmo de produção, neste caso TC = 3min diferente do takt time ideal que seria 2 min

Balanceamento de Linha de Produção

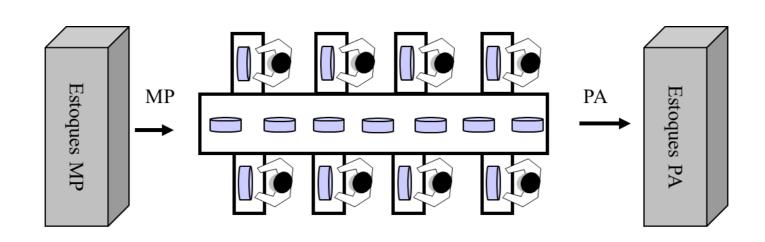
- 3. Tempo de Tarefa (Ti) É o tempo necessário para executar uma atividade ou operação em um posto de trabalho.
- **4. Lead time produtivo** Soma de todos tempo de tarefa = tempo total de produção.



Balanceamento de Linha de Produção

5. Número Teórico de Estações (N): Número mínimo de postos de trabalho necessários:

$$N = rac{\sum {
m Tempos\ das\ tarefas}}{TC}$$



Balanceamento de Linha de Produção

6. Eficiência da Linha (E) Mede o quanto a linha está balanceada:

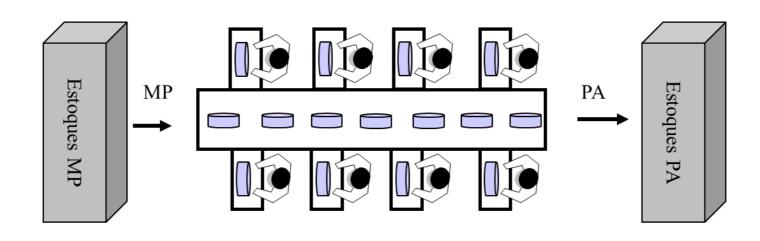
$$E = rac{\sum ext{Tempos das tarefas}}{(ext{N}^{ ext{o}} ext{ de estações} imes TC)} imes 100$$


$$E = \frac{N}{NR}$$

Balanceamento de Linha de Produção

7. Gargalos São postos de trabalho onde o tempo de execução é maior que nas demais estações, causando atrasos e filas.

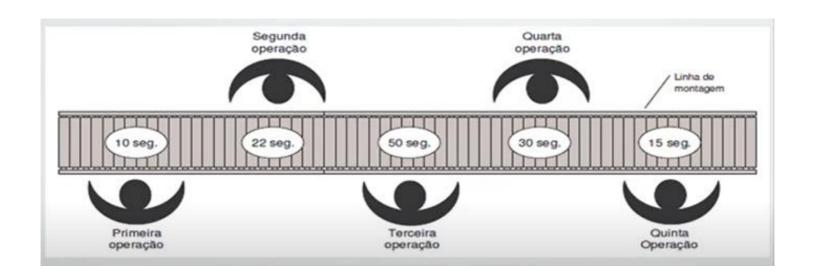
Balanceamento de Linha de Produção


Definições:

8. Precedência

Algumas tarefas só podem ser iniciadas após a conclusão de outras (ex.: só pode cortar o frango depois da depenagem). Isso deve ser representado em um **gráfico de precedência**.

9. Ociosidade: tempo que um posto de trabalho fica parado aguardando o trabalho de outro posto para continuar.


$$O=100\%-E$$

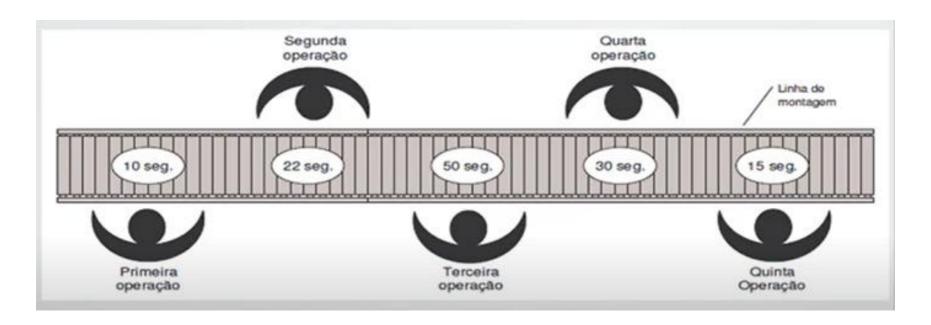
Conceitos e Definições

- TC = tempo necessário para execução da tarefa individual mais demorada "gargalo" = 50 s
- Lead time produtivo (duração da produção) = soma dos tempos de todas tarefas = 10 + 22 + 50
 + 30 + 15 = 127 segundos

Conceitos e Definições

Gargalo: terceira operação: 50 segundos, a esteira deve seguir este ritmo. Qual a capacidade produtiva?

```
\operatorname{Capacidade} = \frac{\operatorname{Tempo\ disponível\ por\ turno}}{\operatorname{Tempo\ de\ ciclo\ (TC)}}
```

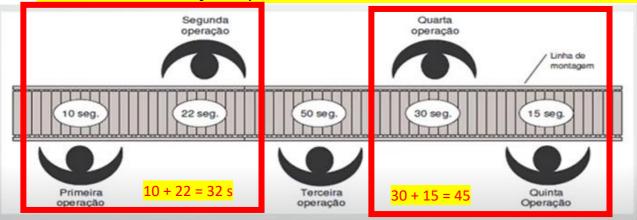

```
Tempo disponível em 1 h = 60min \times 60 \text{ s} = 3.600 \text{ s}

TC = gargalo = 50 \text{ s}

Capacidade produtiva = 3.600/50

Capacidade = 72 peças por hora
```

 Ainda, se o terceiro posto leva 50 segundos, quer dizer que o primeiro posto fica 40 segundos ocioso. Ou seja, 80% do seu tempo ele não faz nada. Logo, podemos concluir que a linha de montagem está desbalanceada.



Conceitos e Definições

Estação de trabalho	Tarefas	Tempo de trabalho	Tempo total disponível	Tempo ocioso
A	1ª e 2ª operações	32 s	50 s	18 s
В	3ª operação	50 s	50 s	0 s
С	4ª e 5ª operações	45 s	50 s	5 s

Porém seriam soluções que minimizariam a ociosidade e reduziria a mão de obra.

- Outra solução seria: juntar todas as operações e criar 1 posto de trabalho com 1 colaborador para fazer tudo, qual seria o TC? TC = 10 + 22 + 50 + 30 + 15 = 127 segundos / 60min = 2,12 min
- Logo o balanceamento busca reduzir ociosidade e/ou aumentar eficiência.

Atividade de Fixação 1

Desenhe um mapa mental sobre os conceitos e definições apresentados na aula sobre balanceamento de linha produtiva.

Aproveite para destacar as fórmulas pertinentes, a ideia é que o mapa mental represente um formulário autoexplicativo que ajudará na Prova 3.

Sugestão: infográfico no CANVA

Atividade 2: Balanceamento de Linha – Frigorífico de Frango

Situação-Problema: Você foi contratado para analisar e balancear a linha de produção de um frigorífico de frango. O gerente deseja que a linha atenda a uma demanda de **120 frangos por hora**, utilizando a menor quantidade possível de postos de trabalho e aumentando a eficiência.

- 1. Calcule o TC
- 2. Calcule o N
- 3. Proponha uma solução que atenda a demanda.
- 4. Calcule a eficiência ideal e a eficiência da sua proposta.

Tarefa	Descrição	Tempo (em segundos)	Precedência
А	Insensibilização	25	-
В	Sangria	20	А
С	Escaldagem	40	В
D	Depenagem	30	С
Е	Evisceração	50	D
F	Lavagem da carcaça	20	E
G	Inspeção final	30	F
Н	Resfriamento	25	G
I	Corte e embalagem	40	Н

Atividade 2: Balanceamento de Linha – Frigorífico de Frango

Situação-Problema: Você foi contratado para analisar e balancear a linha de produção de um frigorífico de frango. O gerente deseja que a linha atenda a uma demanda de **120 frangos por hora**, utilizando a menor quantidade possível de postos de trabalho e aumentando a eficiência.

1. Calcular o Tempo de Ciclo (TC)

$$TC = rac{ ext{Tempo disponível por período}}{ ext{Unidades a serem produzidas no mesmo período}}$$

$$TC = rac{3600 ext{ segundos}}{120 ext{ frangos}} = 30 ext{ segundos}$$

2. Calcular o número mínimo de estações (N)

$$N = rac{\sum ext{Tempos das tarefas}}{TC}$$

$$\sum$$
 Tempos das tarefas = 280 segundos $N=rac{280}{30}pprox 9,33\Rightarrow 10$ estações (mínimo arredondado)

Atividade: Balanceamento de Linha – Frigorífico de Frango

$$TC = rac{3600 ext{ segundos}}{120 ext{ frangos}} = 30 ext{ segundos}$$

3. Distribuir as tarefas entre as estações

Objetivo: Alocar tarefas sem ultrapassar 30 s por estação, respeitando a ordem de precedência.

CENÁRIOS: Distribuição respeitando tempo de ciclo e precedência:

	Tarefa	Tempo (em segundos)
1	А	25
2	В	20
3	С	40
4	D	30
5	Е	50
6	F	20
7	G	30
8	Н	25
9	1	40
Tota		280

Tarefa original	Subtarefas	Tempo (s)
C - Escaldagem	C1, C2	20 + 20
E - Evisceração	E1, E2	25 + 25
I - Corte/emb.	11, 12	20 + 20

	Tarefa	Tempo
1	Α	25
2	В	20
3	C1	20
4	C2	20
5	D	30
6	E1	25
7	E2	25
8	F	20
9	G	30
10	Н	25
11	I1	20
12	12	20

$$A \rightarrow B \rightarrow C \rightarrow D \rightarrow E \rightarrow F \rightarrow G \rightarrow H \rightarrow I$$

Atividade: Balanceamento de Linha – Frigorífico de Frango

4. Cálculo de eficiência:

$$E = \frac{\sum \text{Tempos das tarefas}}{(\text{N}^{\circ} \text{ de estações} \times TC)} \times 100$$

$$TC = rac{3600 ext{ segundos}}{120 ext{ frangos}} = 30 ext{ segundos}$$

$$\sum$$
 Tempos das tarefas = 280 segundos

$$N=rac{280}{30}pprox 9,33\Rightarrow 10$$
 estações (mínimo arredondado)

IDEAL X POSSÍVEL

$$E = \frac{280}{10 \times 30} \times 100 = 93,3\%$$

$$E = \frac{280}{12 \times 30} \times 100 = 77,8\%$$

Explicando melhor:

Conceito	Significado	
Tempo de Ciclo (TC)	Intervalo entre saídas consecutivas de produtos	
Takt Time	Tempo de ciclo ideal com base na demanda	
Tempo do Gargalo	Tempo da tarefa mais demorada (limita a cadência real da linha)	
Tempo Total de Produção = lead time produtivo	Soma de todos os tempos das etapas até o produto final	
Número de Estações teórico (N)	número de postos de trabalho ideal para atender a demanda	
Número real de estações (NR)	Número de postos de trabalho possível / real	
Capacidade Produtiva	Tempo total de produção dividido pelo TC	
Eficiência da Linha (E)	Mede o quanto a linha está balanceada	

Situação	O que define o tempo de ciclo (TC) real da linha?
Linha balanceada	O takt time (definido pela demanda e tempo disponível)
Linha desbalanceada	O tempo do gargalo (estação mais lenta)

Outras maneiras de realizar o balanceamento das linhas:

- Adquirir máquinas adicionais e mais modernas;
- Aumentar a velocidade de alimentação dos equipamentos;
- Aperfeiçoar os métodos produtivos;
- Ajustar a velocidade da linha;
- Subcontratar e terceirizar.

Portanto, as alternativas secundárias devem ser conhecidas pela gestão. Afinal, é primordial que havendo a impossibilidade de implementar o Plano A, haja um Plano B, no mínimo.

Atividade de fixação 3, 4 e 5

Ver planilha

