

| Curso:            | Tecnologia em Processos Gerenciais | Período Letivo:  | 3 |
|-------------------|------------------------------------|------------------|---|
| Professora:       | Dra. Thaisa Rodrigues              | Data: 03/07/2025 |   |
| <b>Estudante:</b> |                                    |                  |   |

# PROVA 3 – ADMINISTRAÇÃO DA PRODUÇÃO

**Questão 1** — **Cálculo do tempo de ciclo.** Uma fábrica precisa produzir 480 unidades de um produto por turno de 6 horas. Sabendo que o processo funciona em um único turno por dia, qual deve ser o **tempo de ciclo máximo** para atender essa demanda?

Calcule o tempo de ciclo necessário para atender a essa demanda (em segundos ou minutos).

$$\label{eq:Tempo disponível} \text{Tempo disponível} \\ \frac{\text{Tempo disponível}}{\text{Demanda}}$$

Tempo disponível =  $6h \times 60 \text{ min } \times 60 \text{ s} = 21.600 \text{ s}$ 

$$TC = 21.600 / 480 = 45 \text{ s}$$

Questão 2 – Distribuição das tarefas. A Administradora da Produção precisa fazer o balanceamento da linha de produção que é responsável. Nesta linha são realizadas seis tarefas de forma sequencial, ou seja, para realizar a tarefa B tem que realizar primeiro a tarefa A. Além disso, são tarefas que são complicadas de dividir em subtarefas. Foi realizado um estudo que concluiu que o tempo de ciclo de 90 segundos seria o ideal para atender a demanda mínima.

Considere o conjunto de tarefas abaixo com seus respectivos tempos de execução (em segundos):

| Tarefa | Tempo (s) |
|--------|-----------|
| A      | 40        |
| В      | 35        |
| C      | 30        |
| D      | 20        |
| Е      | 25        |
| F      | 30        |

Logo, sabendo que o **tempo de ciclo máximo é 90 segundos**, distribua as tarefas em postos de trabalho de forma balanceada, buscando o melhor custo-benefício.

a) Organize as tarefas em postos de trabalho.

| Cenário | Nº de<br>Postos | Eficiência<br>(%) | Ociosidade<br>Total (s) | Distribuição dos Postos                                    | Observações                                     |  |  |
|---------|-----------------|-------------------|-------------------------|------------------------------------------------------------|-------------------------------------------------|--|--|
| 1       | 3               | 80 %              | 45 s                    | P1: A+B (75 s) P2: C+D (50 s) P3: E+F (55 s)               | Viável, mas<br>desigual                         |  |  |
| 2       | 2 4 81,8%       |                   | 40 s                    | P1: A (40 s) P2: B (35 s) P3: C+D (50 s) P4:<br>E+F (55 s) | <mark>Melhor</mark><br>equilíbrio               |  |  |
| 3       | 3               | 80 %              | 45 s                    | P1: A+B (75 s) P2: C+D+E (75 s) P3: F (30 s)               | Igual ao Cen.<br>1 em<br>eficiência e<br>postos |  |  |



| Cenário | Nº de<br>Postos | Eficiência<br>(%) | Ociosidade<br>Total (s) | Distribuição dos Postos                                                       | Observações                |
|---------|-----------------|-------------------|-------------------------|-------------------------------------------------------------------------------|----------------------------|
| 4       | 5               | 80%               | 45 s                    | P1: A (40 s) P2: B (35 s) P3: C (30 s) P4: D+E (45 s) P5: F (30 s)            | Muitos<br>postos           |
| 5       | 6               | 75%               | 60 s                    | P1: A (40 s) P2: B (35 s) P3: C (30 s) P4: D (20 s) P5: E (25 s) P6: F (30 s) | Muito ocioso, muito postos |
| 6       | 3               | 70%               | 75 s                    | P1: A (40 s) P2: B+C+D (85 s) P3: E+F (55 s)                                  | Muito ocioso               |

A melhor alternativa é o cenário 2, pois tem maior eficiência, consequentemente menos ociosidade e mais equilíbrio, ou seja, a linha fica mais balanceada e tem TC ciclo menor (55s), ou seja, sua capacidade de produção é maior.

Quem optou pelo cenário 1, 3 e 4, eu considerei parcialmente correto, pois são alternativas possíveis apesar de menos eficiente que o cenário 2.

Quem optou pelo cenário 4 ou 5, por ser opções muito ruins frente as demais possibilidades eu não considerei correta.

b) Quantos postos de trabalho são necessários?

Eu considerei correta a resposta que se enquadra com sua escolha na atividade anterior. Para quem escolheu o cenário 2, a resposta é 4 postos de trabalho.

#### Questão 3 - Cálculo de eficiência da linha

Considere a linha que você balanceou da questão anterior (questão 2).

a) Calcule o tempo total de trabalho (lead time da produção / duração da produção).

$$40 + 35 + 30 + 20 + 25 + 30 = 180$$
 segundos

b) Calcule a eficiência da linha que você balanceou na questão anterior, utilizando a fórmula:

$$Efici\hat{e}ncia = \left(rac{ ext{Tempo total de trabalho}}{ ext{N^o de postos} imes ext{Tempo de ciclo}}
ight) imes 100$$

Eu considerei correta a resposta que se enquadra com sua escolha de linha de produção da questão a). No meu caso, optando pelo cenário 2:

$$TC = 55 \text{ s}$$

Número de postos de trabalho = 4

$$E = (180/4*55) = 81.8 \%$$



**Questão 4 – Identificação de gargalos.** Durante o balanceamento de outra linha de produção, foram atribuídas as seguintes cargas de trabalho por posto:

| Posto | Duração da tarefa (s) |
|-------|-----------------------|
| 1     | 85                    |
| 2     | 90                    |
| 3     | 75                    |
| 4     | 55                    |

a) Qual é o Tempo de Ciclo? Justifique.

É o posto com maior tempo de operação.

Posto 2, pois consome 90 s (igual ao tempo de ciclo).

**b)** Qual é a ociosidade total da linha?

Tempo total disponível = 4 postos 
$$\times$$
 90 s = 360 s  
Tempo efetivamente usado =  $85 + 90 + 75 + 55 = 305$  s

Ociosidade total = 
$$360 - 305 = 55$$
 segundos

Ou

$$E = 305/(4 \text{ postos} \times 90 \text{ s})*100 = 84,72 \%$$

$$O = 100 - 84,72 = 15,27 \%$$

#### Questão 5 - Interpretação e melhorias

A linha de produção da empresa X apresenta uma eficiência de 68%. O gerente deseja aumentar essa eficiência com pequenas alterações no balanceamento. Cite duas estratégias que poderiam ser adotadas para melhorar a eficiência da linha.

- Redistribuição das tarefas para reduzir a ociosidade entre os postos.
- Divisão de tarefas longas em subtarefas para melhor encaixe no tempo de ciclo.
- Inclusão de operadores multifuncionais para reduzir gargalos.
- Automatização de tarefas mais demoradas.



**QUESTÃO 6:** Cinco Ordens de Fabricação (OF1 a OF5) precisam passar por três operações sequenciais: Corte (Máquina A), Furação (Máquina B) e Acabamento (Máquina C). A programação inicial está definida no gráfico de Gantt abaixo, considerando os tempos de operação e os setups já incluídos.

A tabela a seguir apresenta os tempos de processamento em horas e as datas de entrega para cada ordem:

| Ordem de<br>Fabricação | MA | MB | MC | Data de<br>Entrega (h) |
|------------------------|----|----|----|------------------------|
| OF1                    | 4  | 3  | 1  | 19                     |
| OF2                    | 2  | 2  | 2  | 9                      |
| OF3                    | 1  | 4  | 2  | 16                     |
| OF4                    | 2  | 2  | 1  | 15                     |
| OF5                    | 2  | 3  | 4  | 20                     |

a) Com base nestes dados, faça o sequenciamento da produção de acordo com 3 cenários:

CENÁRIO 1 - PEPS (primeiro que entra, primeiro que sai)

|    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
|----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| MA | O | O | O | O |   |   | Х | Z | Z | Υ  | Υ  |    |    |    |    |    |    |    |    |    |    |    |    |    |
| MB |   |   |   |   | 0 | O | O |   |   | Х  | Х  | Х  | Х  | Z  | Z  | Υ  | Υ  | Υ  |    |    |    |    |    |    |
| MC |   |   |   |   |   |   |   | O |   |    |    |    |    | Х  | Х  | Z  |    |    | Υ  | Υ  | Υ  | Υ  |    |    |

## CENÁRIO 2 - MTP (menor tempo de processamento)

|    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
|----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| MA | Z | Z |   |   | Х | O | О | О | 0 | Υ  | Υ  |    |    |    |    |    |    |    |    |    |    |    |    |    |
| МВ |   |   | Z | Z |   |   | Х | Х | Х | Х  | 0  | 0  | 0  | Υ  | Υ  | Υ  |    |    |    |    |    |    |    |    |
| MC |   |   |   |   | Z |   |   |   |   |    | Х  | Х  |    | 0  |    |    | Υ  | Υ  | Υ  | Υ  |    |    |    |    |

### CENÁRIO 3 - MDE (menor data de entrega)

|    | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
|----|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| MA |   |   | Z | Z | Х | O | О | 0 | O | Υ  | Υ  |    |    |    |    |    |    |    |    |    |    |    |    |    |
| MB |   |   |   |   | Z | Z | Х | Х | Х | Х  | 0  | 0  | 0  | Υ  | Υ  | Υ  |    |    |    |    |    |    |    |    |
| MC |   |   |   |   |   |   | Z |   |   |    | Х  | Х  |    | 0  |    |    | Υ  | Υ  | Υ  | Υ  |    |    |    |    |

b) Considerando cada um dos sequenciamentos, qual regra resultou em menor número de ordens atrasadas? Justifique sua resposta.

MDE e MTP pois entram com grande antecedência, sem atrasos, qualquer uma destas opções são viáveis na tomada de decisão gerencial

c) Se o objetivo da empresa for minimizar o número de ordens em atraso, qual regra parece mais adequada? E se o objetivo for minimizar o tempo total de processamento na máquina B, qual regra traria melhor desempenho?

MDE e MTP pois entram com grande antecedência, sem atrasos, qualquer uma destas opções são viáveis na tomada de decisão gerencial

O tempo total de processamento da máquina B é igual para todas as opções, porém a máquina fica livre mais cedo (16h) na opção MDE e MTP.